4. Bei einfachen Ionen entspricht die Oxidationsstufe/-zahl der Ionenladungszahl.

Beispiele: Na⁺ hat die Oxidationsstufe/-zahl +1, Cl⁻ hat die Oxidationsstufe/-zahl -1, Fe²⁺ hat die Oxidationsstufe/-zahl +2, Fe³⁺ hat die Oxidationsstufe/-zahl +3 etc.

- Bei zusammengesetzten Ionen entspricht die Summe der Oxidationsstufe/-zahlen der Ionenladungszahl.
 - Beispiele: Im $(SO_4)^2$ hat Sauerstoff die Oxidationsstufe/-zahl –2 (s. Regel 2). Um auf die Gesamtladung von -2 zu kommen, erhält Schwefel hier die Oxidationsstufe/-zahl +6, im $(PO_4)^3$ hat Sauerstoff wieder die Oxidationsstufe/-zahl –2 (s. Regel 2) und für Phosphor errechnet man sich die Oxidationsstufe/-zahl +5.
- 6. Innerhalb einer ungeladenen Verbindung ergibt die Summe der Oxidationsstufen/-zahlen 0. Beispiele aus dem schriftlichen Examen: Im NaHCO₃ hat Sauerstoff die Oxidationsstufe/-zahl –2 und Wasserstoff +1 (s. Regel 2). Na hat die Oxidationsstufe/-zahl +1 (s. Regel 3) und C erhält damit die Oxidationsstufe/-zahl +4.

Im Fe(OH)₃ hat Sauerstoff die Oxidationsstufe/-zahl -2 und Wasserstoff +1 (s. Regel 2). Für Eisen ergibt sich daher in dieser Verbindung die Oxidationsstufe/-zahl +3.

Beispiele:

Um diese Regeln auf ihre Praxistauglichkeit zu testen, kommen hier noch zwei weitere Beispiele aus den Examen:

Aus der Reaktionsgleichung $2 H_2 + O_2 \rightarrow 2 H_2O$

lässt sich z.B. mit Hilfe der Oxidationszahlen (s. Regel 1, 2 und evtl. noch 6) ableiten, dass

- Sauerstoff reduziert wird, da seine Oxidationszahl von 0 auf -2 abnimmt,
- Sauerstoff aus dem gleichen Grund das Oxidationsmittel (s. Merke S. 35) ist,
- Sauerstoff verbraucht wird, da er zu Wasser reagiert und
- bei der Reaktion Elektronen vom Wasserstoff auf den Sauerstoff übergehen, da die Oxidationszahl des Wasserstoffs von 0 auf +1 ansteigt und die von Sauerstoff ja von 0 auf -2 abnimmt.

Aus der Gleichung a Fe + b H_2O + c O_2 \rightarrow 4 Fe(OH)₃ lässt sich ableiten, dass

- Fe zu Fe³⁺ oxidiert wird (s. Regel 1, 2 und 6) und
- O₂ das Oxidationsmittel ist, da seine Oxidationszahl von 0 auf -2 abnimmt.

Um diese Aufgabe zu lösen, musste man allerdings noch ein bisschen mehr rechnen. Denn es wurde auch danach gefragt, welche Zahlenwerte a, b und c haben müssen, damit die Reaktionsgleichung korrekt ist. Dazu schaut man sich am besten die Angaben in der Aufgabe noch einmal an und entdeckt, dass als Produkt 4 Fe(OH)3 entstehen. Daraus kann man sich ableiten, dass auch 4 Fe als Edukte da sein müssen, a also den Wert 4 hat. Da sich die Zahl 4 auch auf die übrigen Beteiligten des Produktes bezieht, errechnet man sich 12 O und 12 H (da ja die kleine 3 außerhalb der Klammer auch berücksichtigt werden muss). Auf die 12 H der Eduktseite kommt man, indem man 6 H₂O einsetzt (da $6 \cdot 2 = 12$). Damit hat b den Wert 6. Von den 12 auf der Eduktseite benötigten O sind so nur noch 6 übrig und die bekommt man durch 3 O2. Dies liefert uns die letzte noch gesuchte Zahl für c, nämlich 3.

Übrigens...

Nur, weil's schon mal gefragt wurde:

- Die Reaktion von Cystin zu Cystein (s. Skript Biochemie 2) ist eine Reduktion (= Elektronenaufnahme/Hydrierung = Wasserstoffanlagerung).
- Kohlenmonoxid (= CO) ist für uns giftig, da es den Sauerstoff vom Hämoglobin verdrängt und NICHT etwa, weil es eine so starke Oxidationswirkung hat.

3.6.2 Spannungsreihe

Das für die Physikumsfragen notwendige Wissen zu diesem Thema lässt sich erfreulicherweise in einem Satz abhandeln: Ihr solltet euch merken, dass